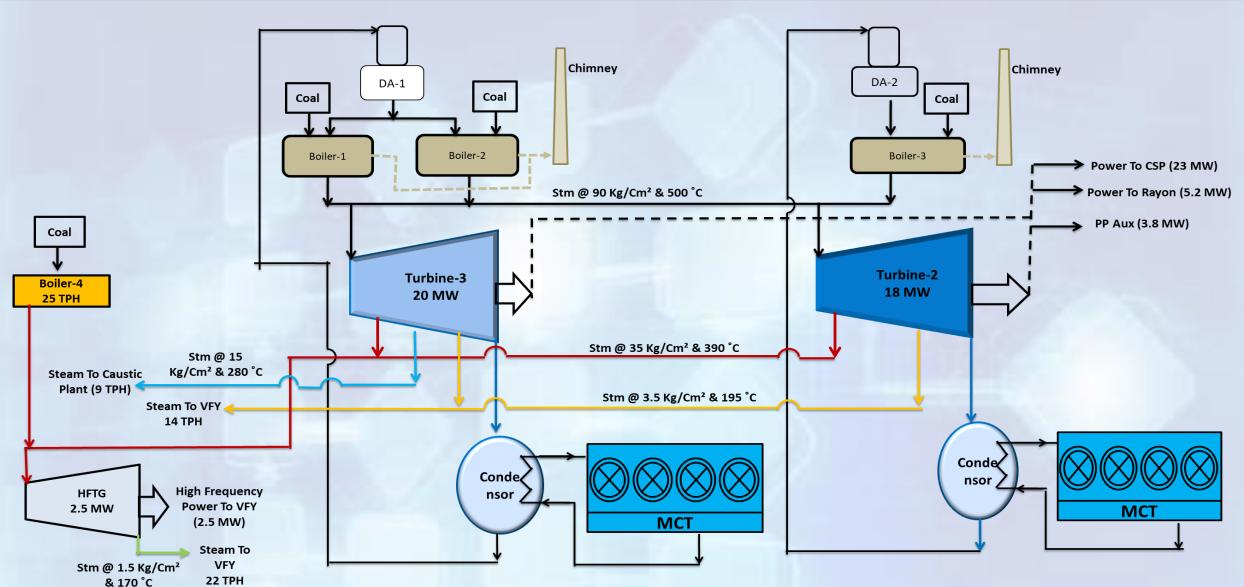


Integrated Operation & Major Products

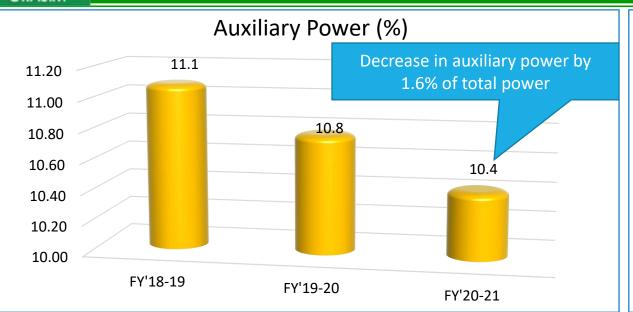
Integrated Operations for Cost Effectiveness

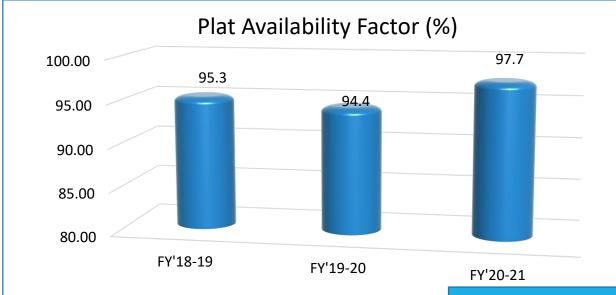

Product	Capacity	Uses
VFY	60.75 TPD	Textile Apparel , Satin, Sarees
Sodium Sulphate	35 TPD	Dye, Organic Chemical
Sulfuric Acid (H ₂ SO ₄)	100 TPD	Captive for VFY
Carbon di Sulphide	27 TPD	Captive for VFY
Captive Power Plant	38 MW	Captive (VFY + Caustic)
Caustic	250 TPD	In process, Dye, Detergent Chemical

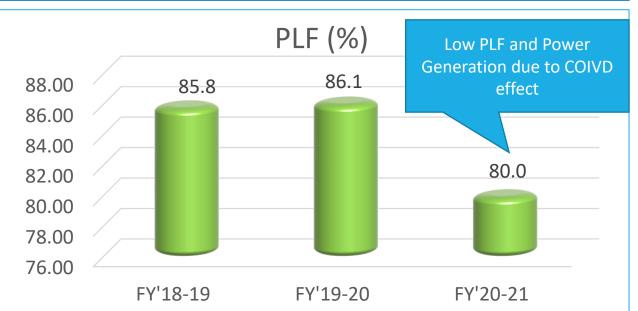
Other than Pulp and Zinc, key Raw Materials are produced in house

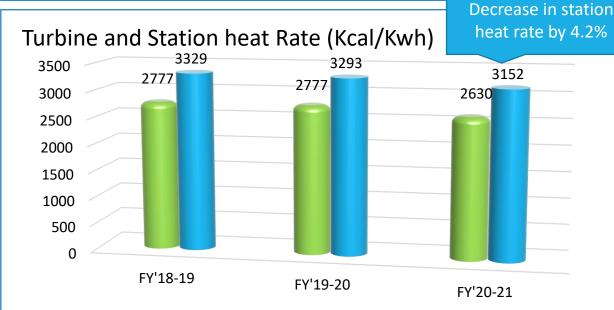
Process Flow Diagram

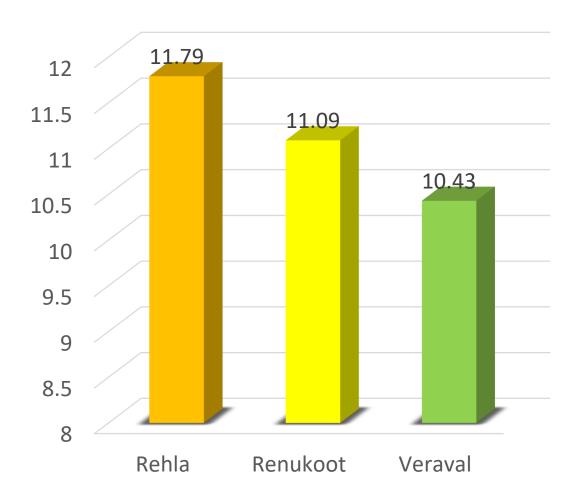
Energy Consumption Overview

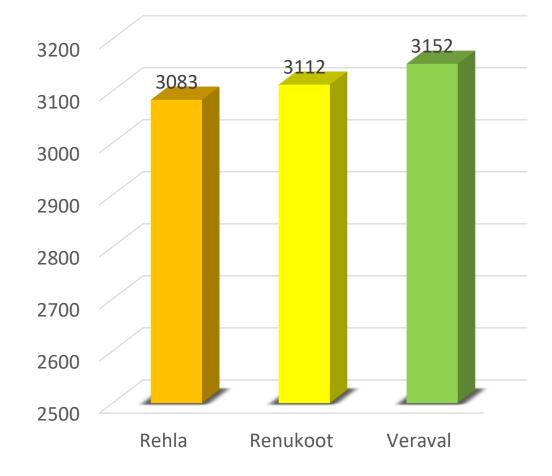



Parameter	UOM	FY 2020-21
Annual Power generation	MW	25.85
PLF	%	79.96
Availability	%	97.69
Gross Heat Rate	Kcal/KWh	3152
Auxiliary Power	%	10.43
Boiler Efficiency	%	83.44
Turbine Heat Rate	Kcal/KWh	2630
DM Water Consumption	%	3.81
Raw Water Consumption	%	1.88
Specific Oil Consumption	L/MWH	0.018



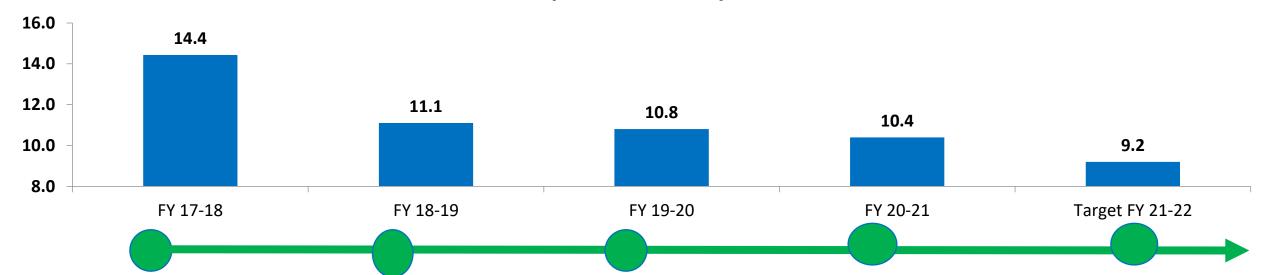

Key Performance Indicators




Benchmarking

Aux Power % in Diff Unit

Gross Heat Rate



Auxiliary Power Roadmap

- ESP-3/3 TR set & controller retrofitting from 2 Phase to 3 Phase
- LED light fixing work
- Applying corrocoat in MCT Pumps
- MCT fan motor replaced with higher energy efficient motors
- Replacement of 2x100 % HT motors run fans with 2x50% Fans with VFD run LT motors in Boiler no#3
- Installation of VSFC in Boiler Feed pump
- Reduction in SA header pressure of Boiler no#3
- Energy IE-3 Motor Installation in main cooling water pump

- Installed & commissioned energy efficient auxiliary cooling water pump in unit-2
- Stoppage of one instrument compressor by optimizing the air vent of dryer & air blaster operation
- Incorporated start-stop logic in ACT fan on cooling water temperature of unit-2

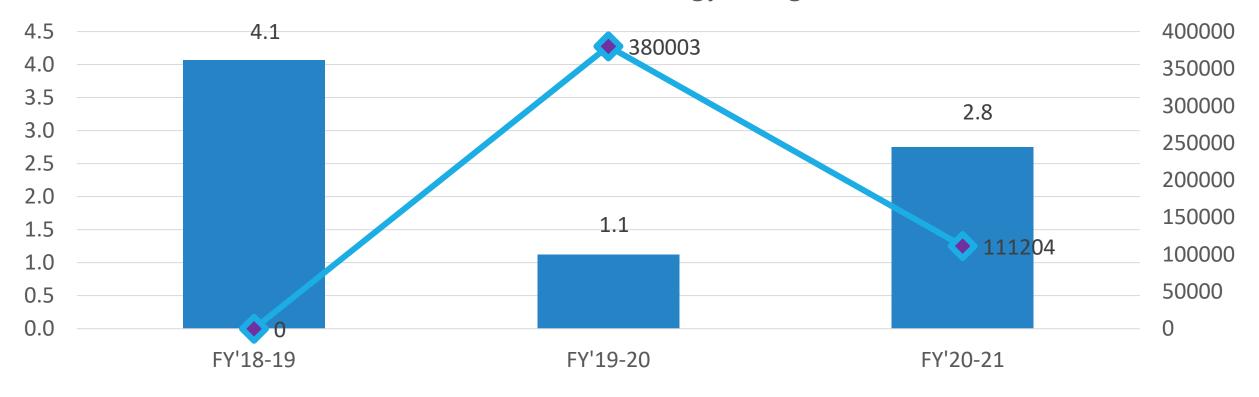
- Installation of New efficient TG-3 in place of old TG 1. Aux power reduction would have been better but due to low PLF its appearing slightly lesser
- Overhauling of HFTG & Improved specific steam consumption from 11.4 Kg/KWH to 10.8 Kg/Kwh after overhauling
- Stoppage of Ash handling compressor for 4 hrs /shift in accordance to low ash

- Installation of new 110 TPH CFBC Boiler and stop old inefficient 2X50 TPH CFBC Boilers & 1x25 TPH stoker fired boiler
- Installation of VFD in main cooling water pumps for 18 MW TG –Condenser
- Installation of energy efficient single auxiliary cooling water pump instead of two pumps

Energy Savings Projects (2021-22)

		Saving Achieved						
SN	Energy Saving Projects	Electrical Energy (KWH)	Thermal Energy (Million Kcal/Year)	(Rs. Million)	Investment (Rs. Million)	Pay back Month		
1	Installation of new 110 TPH CFBC Boiler and stop old inefficient 2X50 TPH CFBC Boilers & 1x25 TPH stoker fired boiler.	0	23928	274	700	30		
2	Installation of VFD in main cooling water pumps for 18 MW TG -Condenser	126000	0	0.69	0.6	10		
3	Installation of energy efficient single auxiliary cooling water pump instead of two pumps	33000	0	1.81	4.2	28		
4	Recovery of condensate water from VFY plant & utilize its energy to save steam & DM water in deaerator	0	1200	25.94	0.5	0		

Energy Savings Projects Implemented


Year	No of Energy Saving Project	Investment (INR Million)	Electrical Energy (Million Kwh)	Thermal Energy (Million Kcal/Year)	Saving (INR Million)
FY 2018-19	4	16.15	4.07	0	22.39
FY 2019-20	7	15.9	1.12	38003	23.12
FY 2020-21	12	196.6	2.75	111204	188.28

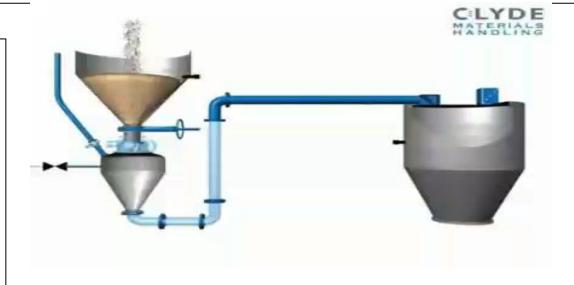
Energy Savings Projects Implemented

Electrical And Thermal Energy Savings

Electriacl Energy Saving (Million Kwh)

Thermal energy Saving (Million Kcal)

Innovative Projects Implemented



Trigger for implementing the project:

• During ESP conveying system monitoring on routine basis, we observed that the ESP hoppers are mostly empty & conveying system are operating in idle.

Modification Adoption:

- Since our unit is operated on imported coal with low ash % & the total ash generation throughout the day is low. To utilize this opportunity, We have analyzed and found that idle time was more than 50% in all the conveying system.
- We started intermittent stoppage of compressor with safe ESP hopper level. To ensure safeguard of our system, we installed draft transmitters in ESP hopper for Real-time monitoring of hopper level drafts. further installed pressure transmitter to indicated vessel back pressure, so that conveying system healthiness can be monitored on real-time basis.
- Provided separate arrangement for service air requirement other than pneumatic conveying

System ON Command

Conveying Air valve opens 60 Sec

Dome valve Opening 10 Sec

Conveying Air valve Closed

Dome valve closing

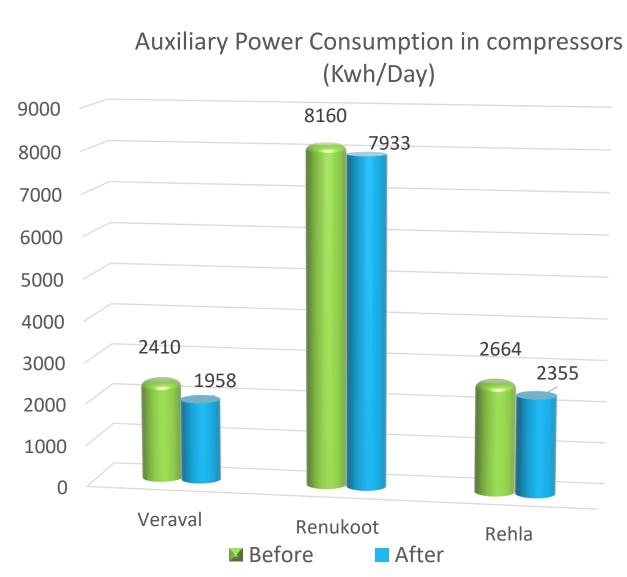
Gap time timer starts 80 Sec

Innovative Projects Implemented

Idea Sharing:

We shared this idea in our synergy meeting and now it is being replicated in our sister companies at their Rehla and Renukoot Units

Saving:

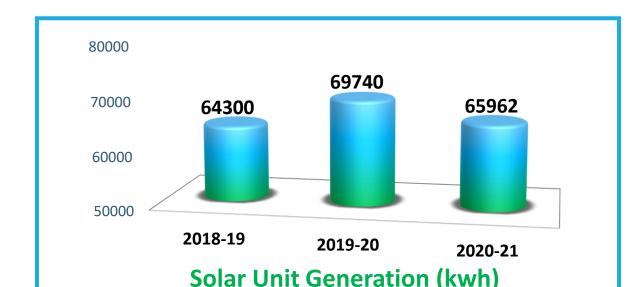

We successfully achieved stopping service air compressor for 10 hrs in a day

Electrical Energy Saving = 452 KWH/Day

Cost Saving = Rs. 8.5 Lakhs/Annum

Electrical energy saving at Renukoot unit = 227 Units/Day

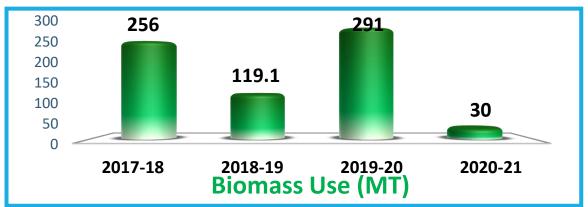
Electrical energy saving at Rehla unit = 309 Units/Day



Utilization of renewable energy sources

Usage of renewable energy for lighting at TPP HSD Area:

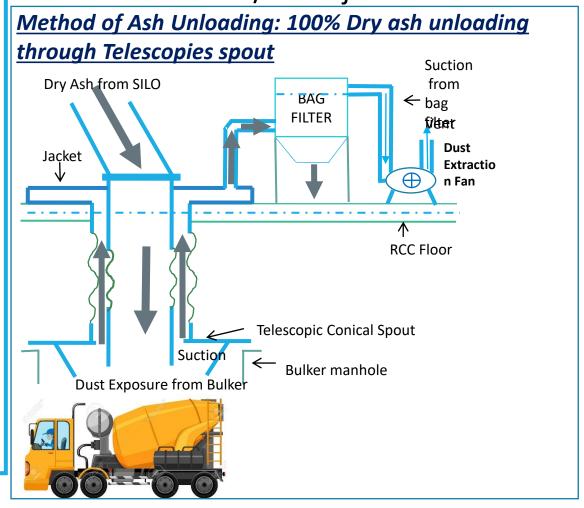
- Installed Solar Power Generation : 50 KiloWatts
- Solar energy : 0.03 % of total power share



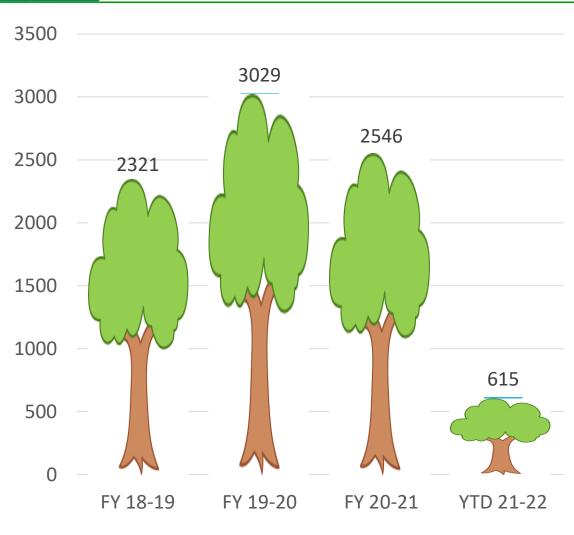
Use of Waste as Fuel (Biomass)

Usage of Biomass:

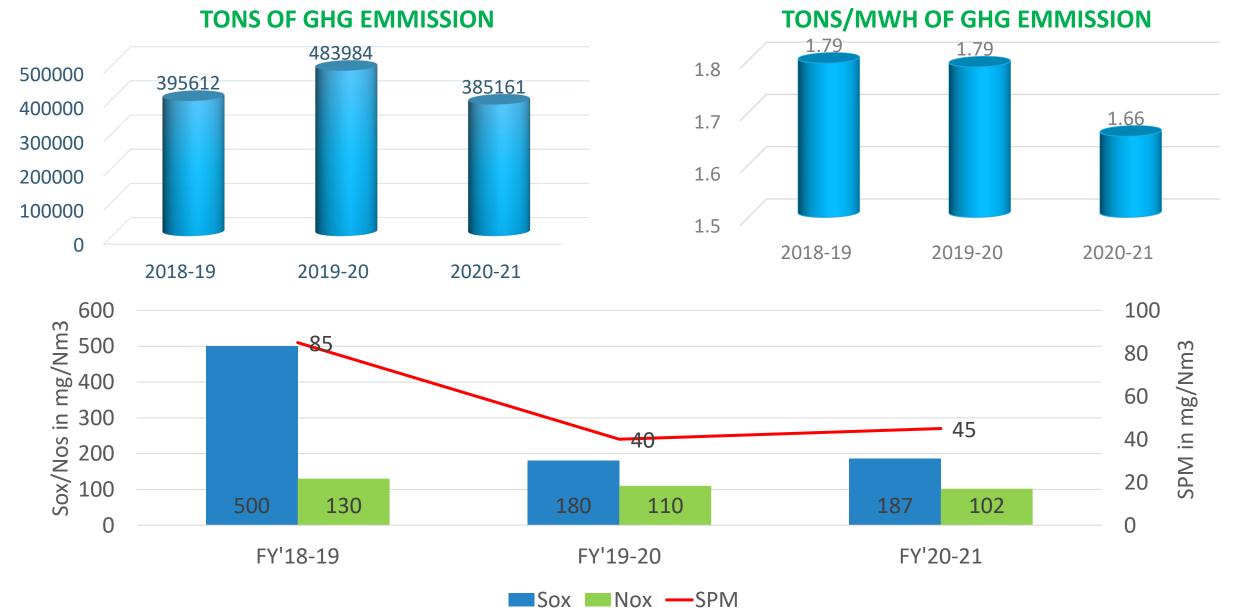
• Explored biomass usage & started using it as fuel



Fly Ash generation & Utilisation


100 % fly ash utilization in cement manufacturing & is sent to our unit UltraTech Cement/Ambuja Cement

Green Belt Development (Plant & Colony)

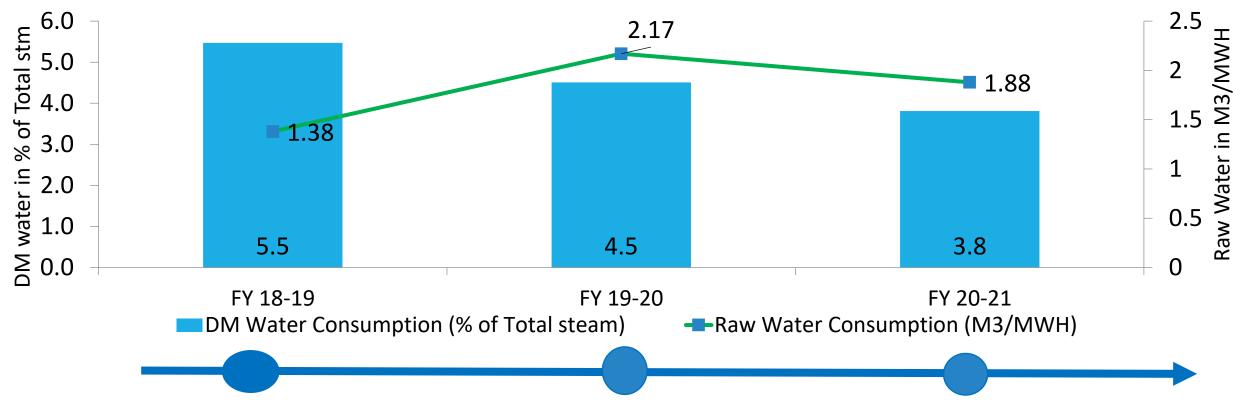


No of tree planted

Environment Management

Environment Management- Best Practices

- 01 Stopped feeding high Sulphur content coal (lignite coal) to reduce Sox emission
- 02 Installed Wheel washing system to reduce dust emission in road side area


- 03 Using limestone to control Sox Emission
- 04 Using battery operated vehicle for movement in factory premises

Water consumption

- Replacement of valves
- Orifice provision in Dearator
- Recovery of soot blowing steam in dearator
- Installation of RO System at inlet to DM Plant and taking its reject water to Cooling Tower under wave
- Dain trap condensate recovery in deaerator through condensate recovery tank-15-20 m3/day
- SSY plant condensate recovery & utilization -120 m3/day
- Drain trap condensate recovery in deaerator through condensate recovery tank-5 m3/day
- ETP RO recovering water usage in cooling tower as make-up -300 m3/day

Implementation of ISO 50001

MANAGEMENT SYSTEM CERTIFICATE

Certificate no: 1000/057406-MSC-RyA-IND

Valid: 11 June 2021 – 10 June 2024

This is to certify that the management system of

Grasim Industries Limited, Unit - Indian Rayon

Junagadh - Veraval Road, Veraval District: Gir Somnath - 362266, Gujarat, India

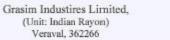
has been found to conform to the Energy Management System standard:

ISO 50001:2018

This certificate is valid for the following scope:

Manufacturing of viscose rayon filament yarn, sulphuric acid, carbon di sulphide an hydrous sodium sulphate, sodium sulphide, caustic soda lye, caustic flakes, hydrochloric acid, liquid chlorine, compressed hydrogen, sodium hyp o and power generation for captive use

Placeard date Recoded 5 20 April 2021



lack of 64 firent of conditions as set out in the Cartification Agreement may ender this Cartificate in soli-ACCREDITED UNIT: DW GL. Business AssuranceR. V., Brainess g. 2004 LR, Resendedit, Natherlands - TEL: +2167 (2022) 18 new directions are under

ENERGY & CARBON POLICY

We, Grasim Industries Limited, Unit Indian Rayon, Veraval recognize energy consumption and carbon emissions as the most important issues currently affecting the planet. We understand the risk of dependence solely on fossil fuels and associated carbon emissions related to our operations. We are committed to demonstrate excellence in Energy and Carbon Management Performance on continual basis

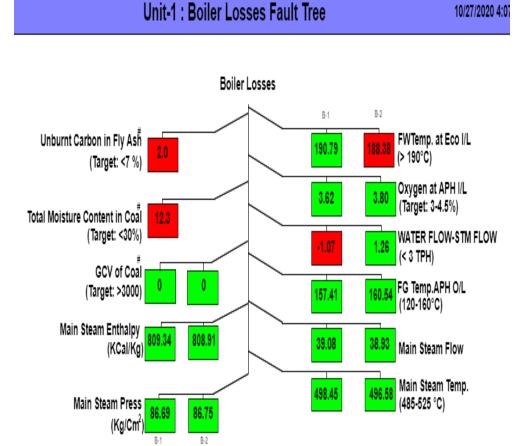
To achieve this, we shall endeavor to:

- Maintain positive legal compliance to energy and carbon regulations and other requirements.
- Raise awareness to encourage efficient use of energy resources, with a focus on reducing its energy intensity and carbon footprint;
- Increase the use of renewable energy wherever possible;
- Promote research and development for cleaner and efficient technologies to support the adoption of low
- Evaluate technically and financially feasible and cost-effective options to reduce potential carbon emissions during the construction and operation of new projects;
- Conserving the natural resources in Power generation and reducing significant energy usage of VFY and chlor-alkali processes;
- Continuous up-gradation of process with energy efficient and Eco-friendly technology to optimize the energy
- Continually improve energy and carbon management within and across the supply and value chains by adopting internationally accepted and economically viable Management Systems and best practices;
- Engage internally and externally with its stakeholders and wider communities to understand and collaborate on actions promoting reduced energy intensity and low carbon approaches to benefit both the Business and
- Actively communicate and disclose our approach and achievements to stakeholders and regularly seek feedback through stakeholder forums:
- Provide necessary resources and information to achieve objective and targets and support the purchase of energy efficient product or services; and
- Monitor measure and raport energy usage and carbon emissions in compliance with internationally

This policy shall be reviewed periodically for its suitability and updated as necessary

Shashank Pareek Unit Head

10.2 % investment in energy Saving projects


Best Practices – Daily Monitoring

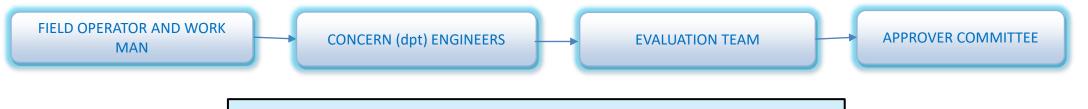
Continuous monitoring of losses due to various performance parameters

Description	Gain/Loss	Impact	Impact	B-1		B Astro-UT-seed		B-3		
		B1&2	B3	Actual/Target Impact		Actual/Target Impact		Actual/Target	Impact	
20°C Increase in Comb Air Temp	Efficiency Increase by 1%	35	80	221.10 210.00	19.36	221.81 210.00	0.03	190.08 200.00	40.06	
6°C Increase in ECO Inlet Temp	Efficiency Increase by 1%	35	80	190.82 194.00	18.40	188.41 194.00	32.47	185.23 204.00	246.96	
21°C Decrease FG APH OL Temp	Efficiency Increase by 1%	35	80	157.41 150.00	12.30	157.41 150.00	17.61	143.20 150.00	25.92	
Description	Gain/Loss		oact R TG2	TG-1 Actual/Target Impact			TG-2 Actual/Target Impact			
0.01 Vacuum in Turbine	13.29 kacl/kwh		0	-0.00 -0.		1772.57		0.89	24.41	
5°C Decrease in Main Steam Temp	13.29 kacl/kwh Loss in Heat Rate	2	8	412.73 494	.00	477.52	499.65 4	94.00	9.24	
Total Impact		2538.99						p = = =		

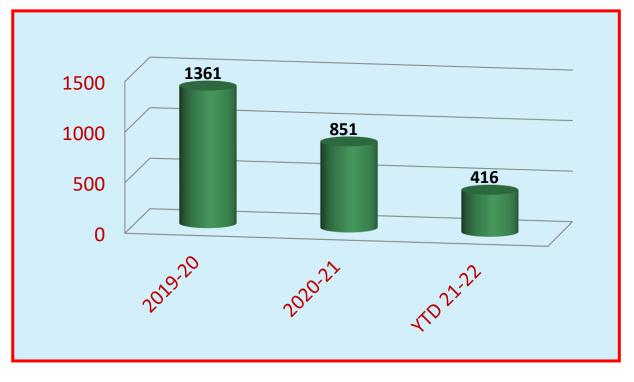
Daily online monitoring of auxiliary power by using cockpit

Daily monitoring system

Summary	Budgeted(R ev. After Bir#3 S/dn)	24-Mar-19	25-Mar-19	26-Mar-19	27-Mar-19	28-Mar-19	29-Mar-19	30-Mar-19	31-Mar-19	Gain/Loss from budgeted	Diff W Previous
otal Generation(TG # 1 & 2)	32.62	6.31	4.83	8.84	8.50	8.46	8.72	7.52	7.52	-25.10	
otal AuY. Power (TG # 1 & 2)	93000	49069	43192	46730	47384	47711	48682	48673	48138		
including Grid intake CPP Avg. AuY .(MW)	3.875	2.04	1.80	1.95		1.99	2.03	2.03	2.01	-44862.00	-53
CPP Avg. AuY .(iviv)					1.97					-1.87	
Admin(MW)	3.94	2.13	1.89	2.04	2.07	2.08	2.12	2.13	2.11	-1.83	
% CPP AuY incuding Grid intake	11.88	32.40	37.26	22.03	23.23	23.50	23.26	26.97	26.67	14.79	
otal CPP AuY incuding Grid & ADMIN	94600	51097	45279	48974	49699	49953	50924	51001	50611	-43989.00	-3
Grand Total Avg. AuY MW	3.94	2.13	1.89	2.04	2.07	2.08	2.12	2.13	2.11	-1.83	
Total AuY % with Admin	12.08 3000	33.74 3792	39.06 3890	23.08 3700	24.36 3790	24.60 3859	24.33 3743	28.26 3578	28.04 3517	15.96 517.00	
otal Inst air consumption	2000	1635	2217	1990	1873	2000	1991	1812	1770	-230.00	
IP.	2212	600	481	866	866	802	806	926	937	-1275.00	
PP-1 ID fan	5807	5563	4963	6154	5741	5898	6066	6056	6279	472.00	
P-1 SA + PA fans	10217	13835	12988	17557	17426	17542	17674	17774	17703	7486.00	
P-2 Bir fans	16500	0	0	0	0	0	19	0	0	-16500.00	
rea Wise											
CPP-1											
P#1 Generation (MW)	13.32	6.31	4.83	8.84	8.50	8.46	8.72	7.52	7.52	-5.80	-
tual Declared AuY, KWH	44000 1.833	38089 1.687	37192 1.660	41730 1,739	42584 1.774	43111 1,796	43882 1.828	43973 1.832	43138 1.797	-862.00 =0.04	-
of AuY.	13.76	25.15	32.08	19.67	20.87	21.23	20.97	24.36	23.90	10.14	
MPRESSORS (CPP-1)	2196	2713.50	3053.50	2845.00	2831.50	2929.50	2867.00	2695.00	2643.50	447.50	
FAN #1	2170	1777	1153	2377	2064	2059	2272	2327	2458	288.00	
FAN#1	4150	2378	2383	4093	4264	4521	4703	4804	4852	702.00	
FAN#1	772 1600	374 1968	432 2114	1102 2314	836 2305	791 2491	775 2373	727 2258	719 2402	-53.00 802.00	
FAN # 2	1600 3411	1968 3786	2114 3810	2314	2305 3677	2491 3839	2373 3794	2258 3729	2402 3821	802.00 410.00	_
FAN #2	1150	1108	1155	1170	1196	1181	1177	1165	1169	19.00	
Ps	11645	9975	9018	11192	11130	11049	11019	11078	10963	-682.00	-
and ACT	11143	9124	9160	9311	9258	9523	9668	9428	9385	-1758.00	
Auy.	1058	848	820	904 2076	917	907	902	885 2112	879	-179.00	
her AuY.(RB+ Silo + ESP 1 & 2)	2300 1106	1640 600.0	1619 481.0	2076 866.0	2060 866.0	2077 802.0	2106	2112 926.0	2091 937.0	-209.00	_
P iY.(ADM)	1106 800	1014.0	481.0 1072.5	1122.0	866.0 1191.5	802.0 1121.0	806.0 1121.0	926.0 1164.0	937.0 1236.5	-169.00 436.50	_
tal AuY. Power (EMS)	43501	37306	36271	43149	42596	43291	43583	43298	43556	55.00	
CPP-2											
PP#2 Generation(MW)	19.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-19.30	
tual Declared AuY, KWH	49000	10980	6000	5000	4800	4600	4800	4700	5000	-44000.00	
of AuY.	10.58	#DIV/0!	#DIV								
iY. Avg./Hr	2.04	0.46 2713 50	0.25 3053 50	0.21 2845 00	0.20 2831 50	0.19	0.20	0.20 2695 00	0.21	-1.83	-
MPRESSORS (CPP-2) W ID FAN 3/1	2196 2293	2/13.50	0	2845.00	2831.50	2929.50	2867.00	2695.00	2643.50	447.50 -2293.00	
W PA FAN 3/1	3476	0	0	0	0	0	0	0	0	-3476.00	
W SA FAN 3/1	2577	0	0	0	0	0	19	0	0	-2577.00	
W ID FAN 3/2	1867	0	0	0	0	0	0	0	0	-1867.00	
W PA FAN 3/2	3506	0	0	0	0	0	0	0	0	-3506.00	
W SA FAN 3/2 Ps (BFP-4&5)	2750 13357	0	0	0	0	0	0	0	0	-2750.00 -13357.00	-
and ACT	12261	4857	1188	0	0	0	0	0	452	-11809.00	
Auy.	1007	974	177	0	0	0	0	0	0	-1007.00	
her (DM +ESP+Coal Feeder)	1350	676	706	608	615	602	594	613	606	-744.00	
P	1106	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1106.00	
ıY.(ADM) tal AuY. Power (EMS)	800 48546	1014.0 10235	1014.0 6139	1122.0 4575	1123.0 4570	1121.0 4653	1121.0 4601	1164.0 4472	1236.5 4938	436.50 -43608.00	
ompressor Break Up	40346	10235	6139	4979	4970	4003	4601	4472	4930	-43000.00	
tal CPP-Compressor-power	4393	5427	6107	5690	5663	5859	5734	5390	5287	894.00	
nning Compressors		3427	0407	3030	3003	30.33	37.34	3330	32.07	0.00	
-1 (45 KW)		0	36	8	0	18	26	0	0	0.00	
-2 (45 KW)		0	67	14	0	258	944	959	954	954.00	
-3 (45 KW) t-4-/Ash Com-1-(160 KW)		930	890	902	893	667	22	0	0	0.00	
t-4-/Ash Com-1-(160 KW) t-5-/Serv Com-1-(75 KW)	l	0	0 845	1055	980	0 843	613	0	0	0.00	
t-6-/Serv Com-2-(75 KW)		0	366	11	0	214	386	853	816	816.00	
t-7-/Serv Com-3-(75 KW)		705	13	0	0	0	0	0	0	0.00	
tal Inst air consumption	1393	1635	2217	1990	1873	2000	1991	1812	1770	377.00	
Com-2-(160 KW)	-	2481	177	260	0	0	0	0	0	0.00	
h Com-3-(160 KW) rew Comp-3 (160KW)		0	0	0	0	0	0	0	0	0.00	_
ew Comp-4 (160KW)		1311	3713	3440	3790	3859	3743	3578	3517	3517.00	
tal service air consumption	3000	3792	3890	3700	3790	3859	3743	3578	3517	517.00	
Comp-Grand Total	4393	5427	6107	5690	5663	5859	5734	5390	5287	894.00	
Remarks		TG# 2 & Boiler -3 is under									
		maintenance									


Online live heat rate display in DCS

Daily Auxiliary Power Consumption Tracking


Project implementation through Kaizen

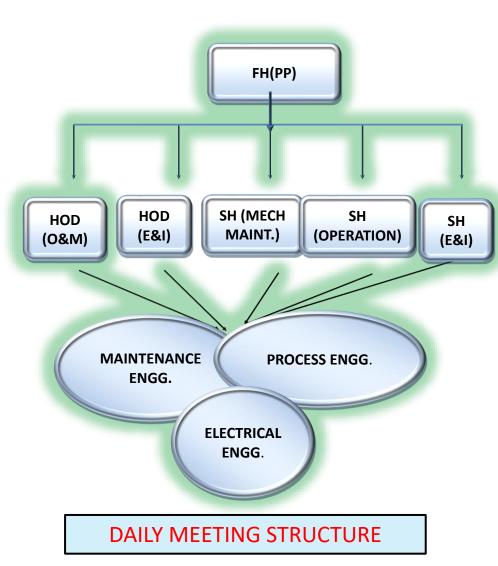
Suggestion and kaizen steps

1st Prize in Annual Kaizen Competition Kaizen Award

Employee Involvement

NATIONAL ENERGY CONSERVATION DAY CELEBRATION 14TH DEC'2020

Energy Oath


Employees Using bicycle

Review meeting

- **➤**Well Established energy management cell headed by FH-PP
- **➤ Daily monitoring of Heat rate and Aux. power deviation report.**
- >Analysis of equipment performance for deviation.
- > Identification of energy conservation scope.
- ➤ Theme base suggestions/Kaizens scheme under "Energy Saving "."Bachat scheme"
- **▶** Feasibility study of suggestions & submit proposal for sanction.
- **▶** Preparation of detail action plan.
- **➤** Benefits analysis after project implementation.

Other Best Practises

- 1. All meetings start with safety contact, followed by Energy contact
- 2. Energy saving Thumb Rules display across the plant
- 3. Idea portal- Z idea
- 4. Ad-hoc budget of 50 Lakhs for Energy Saving
- 5. Teams like Bachat, PMG, Sustainers & Sanchayan
- 6. On the spot award & Shabbash card distribution
- 7. Installation of wireless trans receiver call bell with 200 mtr range at weighing station
- 8. Installation of remote vibration monitoring sensors in cooling water pumps for online condition monitoring
- 9. Installation of anemometer with alarm for generating alert during high winds for safe work practice
- 10. Installation of in house constructed stone removal wheel for online removal of stones, plastics from the belt conveyor without manual interruption.

Energy Conservation awareness & world Environment Day

Energy Conservation & Carbon Emission Campaign in Industry

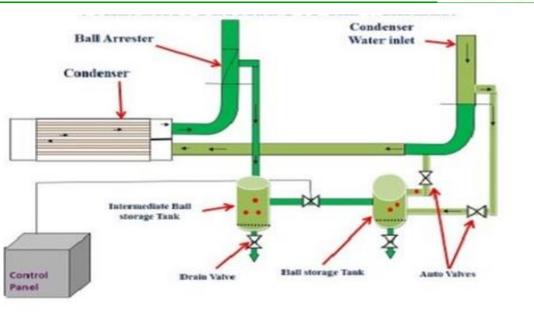
World Environment Day Celebration

Awards

Indian Rayon CPP won Energy Efficient unit at 20th National Award for Excellence in Energy Management 2019: at Hyderabad on dated 18.09.2019

Indian Rayon Team Awarded gold at ICQCC'19 held at Tokyo Japan on dated 23.09.2019

Learnings from CII energy awards

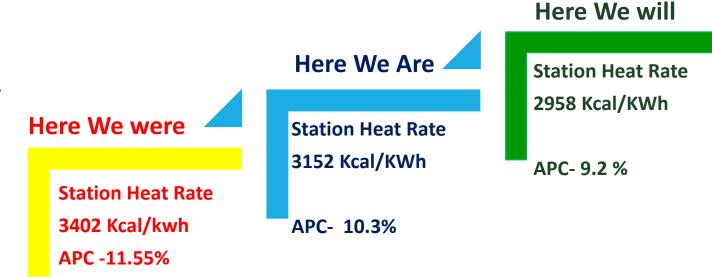

Installation of online cleaning system in condenser:

We have installed online ball cleaning system in condenser-2. We took trial with different ball sizes. But system has failed due to stuck-up of balls at corner points

Reviving the Boiler water treatment to improve quality & reduce cost.

Refurbishing existing flange joint valves by weld end valves to prevent frequent breakdowns

Installation of venti light pipe in new TG building



Way forward

- 1 Installation of new 110 TPH CFBC Boiler and stop old inefficient 2X50 TPH CFBC Boilers & 1x25 TPH stroker fired boiler.
- 102 Installation of water cooled BAC and utilizing its heat for heating DM water through PHE
- Installation additional ESP field in Boiler-3 to sustains emission norms even with one field out of service
- **04** Installation of SOx reduction system with flue gas heat recovery system and heating DM water

The less you burn, the more you earn.....

Sincere Thanks..

Madhukar Dutt Sharma

Email: madhukar.sharma@adityabirla.com

Mo:- +91-9904291444

Grasim industries Limited

Unit: Indian Rayon

Power Plant

